
Collaborative development of
academic software

Paul Natsuo Kishimoto
<paul.kishimoto@iiasa.ac.at>

MESSAGE workshop — Thursday, 10 June 2021
IIASA Energy, Climate, and Environment program

[iiasa]

mailto:paul.kishimoto@iiasa.ac.at


Colophon

These slides have been used for:
▶ MESSAGEix training & capacity-building workshops given by the IIASA

Energy Program on 2020-06-12, 2020-09-10, and 2021-06-10.
▶ A tutorial on 2021-02-05 with participants from the International

Transport Forum at the OECD and IIASA/ECE.

A different subset of the slides was used on each occasion.

LaTeX source, copyright, & license available at
https://github.com/khaeru/doc/.

1/67

https://github.com/khaeru/doc/


Syllabus
C. MESSAGE-GLOBIOM research.

1. Validity & reproducibility (r13y) for modeling & scenario
research. Internal vs. external validity. Perspectives on models.
Validity vs. r13y. Modeling practices for r13y.

D. MESSAGEix development.
2. Version control using git & GitHub. Version control in general. git

and concepts: commit, branch, diff, tag, repo, merge, fetch/pull/push.
3. Collaborative development using GitHub. Collaboration decisions.

GitHub flow. Issue, pull request, milestone, project. Examples & demo.
4. Test-driven development. Purpose. Types of tests. Test coverage.

pytest intro.
5. Continuous integration. Purpose. GitHub Actions, RTD, Codecov,

Stickler.

2/67



Outline

C1. Reproducible research

D2. Version control using git & GitHub

D3. Collaborative development using GitHub

D4. Test-driven development

D5. Continuous integration

3/67



Motivation
Thinking about costs

We have finite resources (time, energy, money) with which to conduct
research. Tasks related to model development should use those resources
efficiently.

Search & information costs
▶ How do I run the model? What does this line of code do?
▶ What about student/visitor X, who did Y two years ago—where is that

version?
▶ What version of the model did I use to produce the results for paper X,

which has been under review for 6 months?

4/67



Motivation
Policing & enforcement costs
▶ Who broke the model so Policy Z no longer has a feasible solution?
▶ When did our reference forecast start doing this weird thing in region r

& sector g?
▶ What is our definitive ‘reference’ projection? Why does it differ

between these two papers?
▶ Who changed this parameter & caused this reviewer to yell at me?

Recovery/disruption costs
The bus factor or truck number—“How many people would need to be hit
by a truck, tomorrow, for us to suffer a serious setback in continuity/loss of
work?”

5/67



C1. Reproducible research

6/67



C1. Reproducible research
C1. Reproducible research

Internal vs. external validity
What is a model?
Modeling practice for validity & reproducibility
Further reading

D2. Version control using git & GitHub

D3. Collaborative development using GitHub

D4. Test-driven development

D5. Continuous integration
7/67



Internal vs. external validity
Both are concerns in modeling & scenario research

Internal validity. Research is free of errors:
▶ Correctly implements methods w/o theoretical/conceptual errors.
▶ Confounding variables addressed to identify relationships between

independent and dependent variables.
▶ Alternative hypotheses can be rejected.

External validity. Research is generalizable to other conditions:
▶ Research can be replicated or reproduced in a different study context.
▶ Research is robust to differences between the study context and other

contexts to which conclusions are applicable.
▶ Research is robust to plausible alternatives to key assumptions.

8/67



What is a model? I
Three perspectives and resulting insights

A knowledge object that embodies or represents a theory or understanding
of some real-world phenomenon.
▶ Theories often causal.
▶ Relationships expressed quantatively: equations connecting variables

representing concepts measured in certain, systematic ways.
▶ Systematized concepts often aggregate: GDP, country, sector.

9/67



What is a model? II
Three perspectives and resulting insights

A scientific instrument that is used to perform experiments: “What would
be the outcome (effect on quantity Y) if X were changed from x1 to x2?”
▶ Another important scientific instrument: the LHC.

▶ EUR 7.5 billion budget; labour from many specialized roles.
▶ Components for preparing the experiment, running it, measuring

outcomes are carefully designed, constructed, tested.
▶ Instruments require meticulous attention to detail.
▶ Description of methods includes instruments so the experiment can be

reproduced.

10/67



What is a model? III
Three perspectives and resulting insights

A software project in which people in organizations create code that is run
on computer systems.
▶ All software has bugs; all organizations have politics.
▶ Software is constantly evolving and never complete.
▶ Tendency to overinvest time in code vis-à-vis documentation.
▶ “Technical debt”: code grows stale over time.
▶ Good software development practices are used to ensure that software

meets needs.

11/67



Validity and reproducibility (r13y)

Since the model is not the real world, implications drawn from modeling
results must be externally valid. Specific threats, as forms of uncertainty:
Structural. Is the theory a correct description of the phenomena?

→ Responses: alternate model formulations.
Measurement uncertainty of input data and parameters.

→ Sensitivity analyses, large (> 103) ensembles of model runs.
Epistemic uncertainty in conditions (e.g. future policy) that are

unknowable, or whereof uncertainty cannot be quantified.
→ Alternate scenarios.

All require a quality instrument that can be reused in an easy, automated
manner, giving the same results every time—a reproducible model.

12/67



Modeling practice for validity & r13y

A collection of mutually-reinforcing practices:
▶ Version control.
▶ Collaborative development and documentation.
▶ Making software and data free and open in permanent archives.
▶ Internal & external peer review of modeling software.
▶ Manual or automated (continuous) testing.
▶ Organization and incentives to do the above.

Adopting best practices helps immensely, but is only part of ensuring
validity and reproducibility. Other research tactics (e.g. careful ex post
checks) also help—but they can be costly.

13/67





Wrapping up: costs again

R13y in principle ≠ a habit of frequent reproduction.
If costs of reproduction are too high, people have little incentive to…
▶ often or ever try to reproduce results.
▶ identify, disclose, and correct internal invalidity (i.e. modeling errors).

When research methods are tacit knowledge rather than embodied in
software, personnel changes make the cost of reproduction go up.
▶ Personnel changes are frequent in academia.

Conclusion → improve modeling practices in pursuit of reproducibility.

15/67



Further reading

▶ L. Barba group @ GWU SEAS: r13y syllabus w/readings on research group
website; “The Hard Road to Reproducibility” in Science.

▶ Max Planck Institute for Meteorology “Good scientific practice” policy, rules,
forms.

▶ Irving (2016), “A Minimum Standard for Publishing Computational Results in
the Weather and Climate Sciences” in Bulletin of the AMS.

▶ Christensen & Miguel (2016), “Transparency, Reproducibility, and the
Credibility of Economics Research” forthcoming in JEL — UC Berkeley Econ.

▶ Nick Barnes: “Publish your computer code: it is good enough” in Nature
News — Climate Code Foundation.

▶ 45+ more peer-reviewed articles and other resources.

16/67

http://lorenabarba.com/blog/barbagroup-reproducibility-syllabus/
http://science.sciencemag.org/content/354/6308/142
http://mpimet.mpg.de/en/science/publications/good-scientific-practice.html
http://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-15-00010.1
http://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-15-00010.1
http:/dx.doi.org/10.3386/w22989
http:/dx.doi.org/10.3386/w22989
https://www.nature.com/news/2010/101013/full/467753a.html
http://ropensci.github.io/reproducibility-guide/sections/references/


D. MESSAGEix development

17/67



Unit D: MESSAGEix development
This section presents an overview of the processes and tools used in
development of the MESSAGEix framework, ixmp, and the
MESSAGEix-GLOBIOM model family of IIASA’s Energy Program

References:
▶ https://docs.messageix.org

→ v: master (bottom-left) → “Contributing to MESSAGEix
development”

▶ Existing content on GitHub, e.g. repositories iiasa/message_ix,
iiasa/ixmp.

However, the concepts, tools, and processes are generalizable to any other
model implemented as software.

18/67

https://docs.messageix.org
https://github.com/iiasa/message_ix
https://github.com/iiasa/ixmp


D2. Version control using git &
GitHub

19/67



D2. Version control using git & GitHub

C1. Reproducible research

D2. Version control using git & GitHub
Version control systems
git concepts

D3. Collaborative development using GitHub

D4. Test-driven development

D5. Continuous integration

20/67



Version control systems
Version control is the management of changes to documents, computer
programs and other collections of information.
▶ Changes or states usually identified by a number or letter code.
▶ Each revision associated with a timestamp and author.
▶ Revisions can be compared, restored, and combined.

Version control systems (VCS, “revision control systems”, other names) are
software that tracks and provide control over revisions.
▶ Automate repetitive, boring processes.

▶ These could be (often are!) done manually.
▶ But, because they are monotonous, mistakes are likely.

▶ Manage the chronological and sequential relationship between
revisions.

21/67



git: a VCS
Several different VCS available. Some tools (e.g. Dropbox; MS Office “track
changes”) provides a subset of VCS-like features…but not suitable for
models and scientific code.

We use git because it is popular, thus well-supported.
▶ A command-line (CLI) tool.
▶ Many GUI applications wrap around the CLI.

E.g. GitHub Desktop, Atom editor, GitKraken.

This lesson: a quick tour of key git concepts.
▶ Many more resources available online—search and find some; identify

the ones most helpful to you.
▶ Here we use diagrams from the Git Book (available in 19+ languages).

22/67

https://desktop.github.com/
https://github.atom.io/
https://www.gitkraken.com/
https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F


git concepts: commit

A single version of a set of files arranged in directories.

▶ Author, timestamp, files (‘blobs’), description.
▶ ID or ‘hash’ e.g.

3f2ca4130cab262cfac62c5a98dd2ebdeb424dc5.
▶ We abbreviate with the first few characters: 3f2ca413

▶ Hash of a previous (‘parent’) commit.
▶ ‘Snapshots’ of each file.

23/67





git: branch
A name for a particular commit and its ancestors:

25/67



git: branch

Commits may share the same snapshot of a file → storage efficiency.

26/67



git concepts: diff
Used to express changes between two snapshots of a single file:

Original file:

Shopping List

* Apples
* Oranges
* Salt
* Pepper

Modified file:

Shopping List
for Friday

* Apples
* Oranges (1 dozen)
* Salt

Changes

Shopping List
+for Friday

* Apples
-* Oranges
+* Oranges (1 dozen)
* Salt

-* Pepper

git doesn’t store these internally, but understands & generates them.

27/67



git: tag

A name applied to a certain commit.

A branch can be extended by adding more commits
to its head.
A tag always stays in the same place.

28/67



git: repository (‘repo’)

A collection of commits, snapshots, and tags.

29/67



git: merge
Combines two commits from different branches.

30/67



git: merge

Creates a new commit.

31/67



git: merge

git merge automatically handles many tasks.

For example, changes to the same file:
▶ branch-a has a commit that modified file.txt near the

top.
▶ branch-b has a commit that modified file.txt near the

bottom.
▶ git applies both changes because they are

non-overlapping, producing a combined file.txt

32/67



git: merge

Branch A changes:

Shopping List

* Apples
-* Oranges
+* Oranges (1 dozen)
* Salt
* Pepper

Branch B changes:

Shopping List
+for Friday

* Apples
* Oranges
* Salt

-* Pepper

Combined changes:

Shopping List
+for Friday

* Apples
-* Oranges
+* Oranges (1 dozen)
* Salt

-* Pepper

→ keep files & directories neatly organized.

33/67



git: fetch/pull/push
git can move commits between two repos in different places:
▶ Two folders/directories on the same computer.
▶ Two computers: yours vs. a colleague’s, or a server online.

The other repo is called a remote. git helps you:
▶ Name and track multiple remotes related to the current repo.
▶ Associate a local branch with one branch on one remote.

Operations
▶ fetch: copy commits, branches, tags from a remote repo to yours.

Doesn’t change anything.
▶ pull: does three things

1. Fetch a remote repo.
2. Add new commits from the remote repo onto associated local branch.
3. Fast-forward the pointer at the head of the local branch.

▶ push: pull, but in the opposite direction. 34/67



Another visualization
1

2

3

4

5

6

7

8

10

9

T1

T2

Trunks

Branches

Merges

Tags

Discontinued
development

branch

1, 2, …, 10 commits.
2, 3 a branch; work done in parallel. Others can get

& use 1 while 2, 3 are developed.
4, 9 merge commits.

The changes made in 2, 3 (or 6, 7) are
combined with 1 (or 4) to produce the new
revision 4 (or 9).

1, 4, 9 the ‘master’ branch
Chosen by the user to be the authoritative
version of the code.

T1, T2 tags.

35/67



D3. Collaborative development
using GitHub

36/67



D3. Collaborative development
C1. Reproducible research

D2. Version control using git & GitHub

D3. Collaborative development using GitHub
General concepts
GitHub
GitHub workflow concepts

D4. Test-driven development

D5. Continuous integration
37/67



General concepts
VCS like git provide tools for managing versions of code.

They do not:
▶ Require collaboration.

You can use git in a single local repo without an Internet connection.
▶ Require that the files/code do anything, or be ‘correct’.
▶ Prescribe how or to what end we should use them.

Software development comprises…
▶ the actions of conceiving, specifying, designing, programming,

documenting, testing, and bug fixing…
▶ involved in creating and maintaining software.

38/67



General concepts
Collaborative development: when software development involves 2+
people embedded in 1+ organizations.
▶ Using a VCS can make this a lot easier, but…
▶ All involved must agree on how to use the VCS.

To collaborate, we must communicate about code:
▶ “[code] used to do X for me, but now it doesn’t.”
▶ “[code] says it will do X, but instead does Y.”
▶ “[Al’s code] does X, [Bo’s code] does Y, but Jo wants to do both.”
▶ “We fixed Y by making [changes] to [code].”
▶ “I wrote [new code] and I want everyone to use it.”
▶ “You should use [version] instead of [version].”

39/67



GitHub

A (very) popular website.

You (user) or a group (organization) can store git repos on their servers.

More importantly, provides many tools for software development tasks
(previous slide).
▶ These are tightly tied to specific git repos, branches, commits, and

tags.
▶ They make it easy to use a certain workflow of software development.
▶ Understanding and using this workflow is a good basis for teams

collaborating on software.

40/67



BUT (!)
GitHub’s features are only higher-level tools, built on git.

They suggest a certain workflow, but every set of collaborators must still
decide whether and how to use the features, and what their use means.

(!) below flags these decisions. For example:
▶ Alice and Bob both run into problems with Model X.
▶ Bob files a bug report (on GitHub) that doesn’t prompt any action.
▶ Alice doesn’t use GitHub at all. Her problem results in a new branch

with many commits, lots of discussion, a quick merge into master, and
a release—all via GitHub.

→ Why did this happen?

41/67



GitHub workflow concepts: fork
A repo that is created by copying another repo.

Example:
▶ https://github.com/iiasa —IIASA organization.
▶ https://github.com/iiasa/ixmp —‘main’ repository for ixmp.

▶ Can be made public or private.
▶ View and push access can be controlled.

▶ https://github.com/khaeru —user profile.
▶ https://github.com/khaeru/ixmp —user’s fork of ixmp.

Useful for working on changes for private use, or isolating work before it is
merged with the main repo.
Can view all forks from a repo.

42/67

https://github.com/iiasa
https://github.com/iiasa/ixmp
https://github.com/khaeru
https://github.com/khaeru/ixmp


GitHub: release

A git tag with title, description, and associated
downloads.
Example:
https://github.com/iiasa/ixmp/releases —all releases of ixmp.

43/67

https://github.com/iiasa/ixmp/releases


GitHub: issue
A discussion about some bug, planned feature, or other issue (!) related to
a specific repo.

Example: https://github.com/iiasa/ixmp/issues/162

▶ Identified by a number: iiasa/ixmp#162.
▶ Title and description from by the user who opened it; comments from

others.
▶ Can be assigned to a particular user.

(!) often the person responsible for fixing/addressing it.
▶ Can be associated with a label, milestone (later), or project (later).
▶ Status: open or closed. (!) Does ‘closed’ mean ‘fixed’?
▶ https://github.com/iiasa/ixmp/issues —all issues for a repo.

Search & filter tools. 44/67

https://github.com/iiasa/ixmp/issues/162
https://github.com/iiasa/ixmp/issues


GitHub: pull request (PR)
A request to git merge one branch into another (the ‘base’).

Example: https://github.com/iiasa/ixmp/pull/309

▶ Similar to issues: title, description, assignee(s), comments, label,
milestone, project.

▶ Status: open, merged, or closed [without merging].
▶ Reviewer(s) — similar to assignees, 0+ other users (next slide).
▶ List of commits since the common ancestor.
▶ Collective diff for all changes introduced in the branch.
▶ Checks related to continuous integration tools (next lesson).

Caution: a branch named iiasa:example is not the same as
khaeru:example!

45/67

https://github.com/iiasa/ixmp/pull/309


GitHub: PR (continued)
Pull requests can close a specific issue, e.g. by fixing a bug or adding a
desired feature.

Reviewers are requested, can view the commits and diff.
▶ Add comments on specific changed lines.
▶ Approve, request changes, or just comment.

(!) Collaborators must decide how to use PRs/reviews:
▶ Are reviews required? How many?
▶ Who can review the code?
▶ Different reviewers for different parts of code/types of issues or PRs?
▶ Should the code itself contain certain things?

https://github.com/iiasa/ixmp/pulls —all PRs for a repo.
46/67

https://github.com/iiasa/ixmp/pulls


GitHub: milestone

A target for collecting issues and pull requests.
Example:
https://github.com/iiasa/message_ix/milestone/5?closed=1
▶ Title and description.
▶ Status: open or closed.
▶ Can be assigned a target date.
▶ (!) What happens when the date passes?
▶ (!) Is a release created when the milestone is reached?

47/67

https://github.com/iiasa/message_ix/milestone/5?closed=1


GitHub: project

Kanban-style system for organizing multiple tasks.
Example: https://github.com/orgs/iiasa/projects/3
▶ Cards for tasks that are either text (title/body) or links to issues/PRs.
▶ Columns that represent status of tasks.
▶ Automation to move cards when issues/PRs are created, closed,

merged.
▶ Can bridge multiple repos.

48/67

https://github.com/orgs/iiasa/projects/3


D4. Test-driven development

49/67



D4. Test-driven development
C1. Reproducible research

D2. Version control using git & GitHub

D3. Collaborative development using GitHub

D4. Test-driven development
Purpose
Types of tests: unit, integration
Test coverage
pytest

D5. Continuous integration
50/67



Why test?
Software tests ensure that software meets quality standards.

Different kinds of tests ensure that…
▶ the code works as intended—in part and in whole;
▶ improvements do not cause regressions—breakage of existing

features;
▶ speed, memory/storage use, and other performance metrics are within

desired limits; and/or
▶ the software can be installed and used in its intended environment(s).

Testing can be done manually (following a list of instructions), but is most
commonly additional code that:
1. Operates the target code in a certain way.
2. Checks outputs or performance against expected outcomes. 51/67



Types of tests

Unit tests of specific functions or lines—small pieces of code.
Integration tests of the interactions between lower-level components.
System tests of the completely integrated system.

Test-driven development:
1. Write tests first, as a way of saying:

▶ “The code we write should do this.”
▶ “The bug reported by Person A represents a failure to do this.”

2. Write or edit code until the tests pass.
3. Iterate as needed.

52/67



Test coverage
A metric that determines whether part or all of the software is tested.

Often measured as a number:
(number of lines of tested code) / (total lines of code)

Some common targets:
▶ Code changes/additions must not decrease overall test coverage.
▶ New additions must have 100% test coverage.
▶ Test coverage must be 100%.

Not the only important concept! Code may be 100% covered by unit-level
tests, yet still fail to integrate or work correctly at higher, system level(s).

53/67



pytest
A Python software package that helps to write tests for other Python code.
All parts of the MESSAGEix stack are tested using pytest.

Example:
def test_get_scalar(test_mp):

scen = ixmp.Scenario(test_mp, *can_args)
obs = scen.scalar('f')
exp = {'unit': 'USD/km', 'value': 90}
assert obs == exp

This tests (assert obs == exp) that the value returned by a certain
function (scen.scalar) has a specific value (exp). If not, the text fails.

Success and failure for many tests is reported when pytest is run on the
whole code base.

54/67



Learn pytest
Documentation: https://docs.pytest.org + many online examples
Discovery files and functions with names like test_*.py or

def test_foo(args): are automatically collected and run.
Fixtures e.g. test_mp in the prior example: prepared Python objects

used across multiple tests, generated by a function.
Configurable tests can be included or skipped based on command-line

options, the operating system environment, etc.

Testing utilities: ixmp and other packages contain functions and tools that
help test themselves or other software built on them.

Example: ixmp.testing.make_dantzig() sets up Dantzig’s
cannery/transport problem, as used in several other ixmp tests.

55/67

https://docs.pytest.org
https://docs.messageix.org/projects/ixmp/en/stable/api-python.html#ixmp.testing.make_dantzig


D5. Continuous integration

56/67



D5. Continuous integration

C1. Reproducible research

D2. Version control using git & GitHub

D3. Collaborative development using GitHub

D4. Test-driven development

D5. Continuous integration
Purpose
MESSAGE CI tools: GitHub Actions, RTD, Stickler, Codecov

57/67



Purpose of CI

Review from Lesson D4: “integration tests” confirm that
lower-level components interact properly.

Continuous integration: frequent execution of integration and
other tests.
▶ For atomic changes, i.e. individual commits, or according

to a schedule, e.g. nightly.
▶ Performed by an automated system using test code and

other configuration.

58/67



Why use CI?
To avoid rework.
▶ Running tests only at the end of a process of developing new code

may turn up unexpected bugs or incompatibilities.
▶ This results in rework: re-writing code again to address these

problems.

To be be robust to external conditions.
▶ Code that relies on e.g. an external web service or data source may be

broken if that service/source changes.
▶ CI makes these issues visible immediately, so they may be fixed.

To enforce quality without human intervention.
This reduces the workload on pull request reviewers.

59/67



MESSAGE CI tools: GitHub Actions
Runs the test suite on Linux, macOS, Windows.

1. Watches a specific GitHub repo for new commits or PRs.
2. Starts 1+ virtual machine(s) with specific software.

▶ e.g. multiple versions of Python.

3. git fetch the latest code.
4. Run a specific script defined in a file that lives with the code

(.github/workflows/, in YAML format).
▶ Scripts usually run the test suite, but also take other, configurable

actions.

5. Build results left as a check on the associated PR.

Example for all tools: https://github.com/iiasa/message_ix/pull/286
60/67

https://github.com/iiasa/message_ix/pull/286


CI tools: Read The Docs (RTD)
Builds (and hosts) the documentation.

▶ Documentation is stored as Markdown (.md) or ReStructuredText
(.rst) files alongside the code (usually in doc/source).

▶ The Python program Sphinx (https://www.sphinx-doc.org/en/2.0/)
turns these in HTML websites, PDF files and more.

▶ RTD…
1. watches a repo (like GitHub Actions),
2. uses Sphinx to build the docs, and then
3. hosts them on the Web.

▶ Supports multiple versions for each repo—associated with branches.
▶ IIASA/ENE uses the commercial service to generate docs from

public/private repos, use a custom domain docs.messageix.org, &c.
61/67

https://docs.messageix.org


CI tools: Codecov

Analyses the coverage of tests run on other CI tools.

▶ pytest-cov plugin for pytest links it with the coverage package to
measure coverage of lines/files.

▶ A coverage report is uploaded from GitHub Actions run to Codecov.
▶ Codecov provides a web interface for browsing reports,
▶ …compares PR code coverage with the coverage of the target (e.g.

master) branch, and
▶ …leaves a check on GitHub if the PR maintains/improves coverage.

62/67

https://pytest-cov.readthedocs.io
https://github.com/nedbat/coveragepy


CI tools: Stickler

Checks for badly-formatted Python code.

▶ Leaves comments on specific lines as a GitHub reviewer.
▶ Tip: use a linter in your editor (e.g. linter-flake8 for Atom) to

ensure your code is clean before you commit and push.

63/67

https://atom.io/packages/linter-flake8


CI tips and tricks
Earlier: one purpose of CI is “to enforce quality without human
intervention.”

However, CI is even more useful if used to help learn good development
practice:
1. Before commit/push, a dev thinks, “When I push this/open a PR, will

all the checks pass?”
2. “That includes GitHub Actions, AppVeyor (Windows tests)…”
3. “…but wait! I just added something that might only work on my Linux

system.”
4. “I’d better look again to make sure it works cross-platform, like other

parts of the code.”

→ Steps 3 and 4 eventually become ingrained habit.
64/67



Wrapping up

65/67



Wrapping up
Always ask: Are development practices clear, and clearly motivated?
If not, talk about it!
▶ Someone can explain it to you → ensure it’s written down for others.
▶ It could prompt a conversation, reflection, and change in practice →

better practice → better research.
▶ Written descriptions may not be up to date with current practice.

Read between the lines. What’s not said in any org. is as important as
what is emphasized.
▶ Editors, OS not mentioned today → we choose not to standardize.
▶ Scheduling releases.
▶ Who is assigned (or sees incentives) to work on what?
▶ Example of Alice and Bob’s bugs—what tasks get priority? Why?

66/67



Thank you!


	C1. Reproducible research
	Internal vs. external validity
	What is a model?
	Modeling practice for validity & reproducibility
	Further reading

	D. MESSAGEix development
	D2. Version control using git & GitHub
	Version control systems
	git concepts

	D3. Collaborative development using GitHub
	General concepts
	GitHub
	GitHub workflow concepts

	D4. Test-driven development
	Purpose
	Types of tests: unit, integration
	Test coverage
	pytest

	D5. Continuous integration
	Purpose
	MESSAGE CI tools: GitHub Actions, RTD, Stickler, Codecov

	Wrapping up

